Dobrovolsky, S., L.
Gorobets. 2023. Growth duration, life history and
ecological traits of bony-toothed birds (Odontopterygiformes): implications
from bone histology. Geo&Bio, 24:
141–158. [In English, with Ukrainian summary]
Growth duration, life
history and ecological traits of bony-toothed birds (Odontopterygiformes):
implications from bone histology
Bony-toothed birds
(Odontopterygiformes), an order of seabirds that existed throughout most of the
Cenozoic, had unusually fragile, thin-walled bones. This complicates their
study and draws attention to microscopic methods, which are applicable even to
fragmentary remains. The histological structure of long bones of the limbs of
two species from the lower Lutetian locality Ikove (Luhansk Oblast, Ukraine)
was studied: Lutetodontopteryx tethyensis and cf. Dasornis sp.,
representing the two main clades of the order. The well-preserved microstructure
of the bones sheds light on the growth pattern of these birds, which turned out
to be similar to that of recent Neognathae: with rapid and typically sharply
terminated bone growth. This resulted in the apposition of azonal woven-parallel
tissue, covered with outer and inner circumferential layers (OCL and ICL),
usually sharply delimited from it. Like in other birds, osteohistological
features allow to distinguish gross developmental stages of the animals
(juveniles, young adults, and older adults) and provide hints about events of
their life history, such as egg-laying or moulting, which enhance the development
of resorption cavities and, probably, secondary osteons. The humeri of L.
tethyensis show a structure of the outer cortex unusual for birds, which
indicates a less abrupt than usual growth cessation. Age determination from the
sub-layers in the inner circumferential layer (a method which works in some
species of recent birds but not in other) proved impossible for L.
tethyensis; for cf. Dasornis sp. the question remains open. The
duration of the growth in the studied species cannot currently be determined
precisely, but can be estimated at 102 days, probably (in contrast
to previous inferences) less than one year. A relatively short development supports
the hypothesis about Odontopterygiformes being specialised consumers of squid, based
on the morphology of the pseudoteeth. Eating squid can be an explanation of the
observed osteohistological features, which could be caused by calcium deficiency.
Alfonso-Carrillo, C., C. Benavides-Reyes, J. de los Mozos,
N. Dominguez-Gasca, E. Sanchez-Rodríguez, A. I. Garcia-Ruiz, A. B. Rodriguez-Navarro.
2021. Relationship between bone quality, egg production and eggshell quality in
laying hens at the end of an extended production cycle (105 weeks). Animals,
11: 623. https://doi.org/10.3390/ani11030623
Angst D., A. Chinsamy, L. Steel, J. P. Hume. 2017. Bone
histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes). Scientific Reports,
7 (1): 7993. https://doi.org/10.1038/s41598-017-08536-3
Atterholt J., A. W. Poust, G. M. Erickson, J. K. O’Connor.
2021. Intraskeletal osteohistovariability reveals complex growth strategies in
a Late Cretaceous enantiornithine. Frontiers in Earth Science, 9:
640220. https://doi.org/10.3389/feart.2021.640220
Atterholt J., H. N. Woodward. 2021. A histological survey
of avian post-natal skeletal ontogeny. PeerJ, 9: e12160. https://doi.org/10.7717/peerj.12160
Bailleul A. M., J. O'Connor, M. H. Schweitzer. 2019.
Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ,
7: e7764. https://doi.org/10.7717/peerj.7764
Benavides-Reyes, C., A. B. Rodriguez-Navarro, H. A. McCormack,
B. K. Eusemann, N. Dominguez-Gasca, P. Alvarez-Lloret, R. H. Fleming,
S. Petow, I. C. Dunn. 2021. Comparative analysis of the morphology, chemistry
and structure of the tibiotarsus, humerus and keel bones in laying hens. British Poultry Science, 62 (6): 795–803.https://doi.org/10.1080/00071668.2021.1943310
Bourdon E., J. Castanet, A. de Ricqles, P. Scofield, A. Tennyson,
H. Lamrous, J. Cubo. 2009. Bone growth marks reveal protracted growth in New
Zealand kiwi (Aves, Apterygidae). Biology Letters, 5 (5): 639–642.
https://doi.org/10.1098/rsbl.2009.0310
Bourdon E. 2011. The Pseudo-toothed birds (Aves,
Odontopterygiformes) and their bearing on the early evolution of modern birds. In:
Dyke, G., G. Kaiser (Eds). Living Dinosaurs: The Evolutionary History of
Modern Birds. Wiley-Blackwell, Chichester, 209–234. https://doi.org/10.1002/9781119990475.ch8
Broughton, J. M., D. Rampton, K. Holanda. 2002. A test of
an osteologically based age determination technique in the Double-crested
CormorantPhalacrocorax
auritus. Ibis, 144 (1): 143–146. https://doi.org/10.1046/j.0019-1019.2001.00004.x
Canoville, A.; A. Chinsamy, D. Angst. 2022. New comparative
data on the long bone microstructure of large extant and extinct flightless birds.
Diversity, 14: 298. https://doi.org/10.3390/d14040298
Carrier, D. R., J. Auriemma. 1992. A developmental
constraint on the fledging time of birds. Biological Journal of the Linnean
Society, 47 (1): 61–77. https://doi.org/10.1111/j.1095-8312.1992.tb00656.x
Castanet, J., K. Curry Rogers, J. Cubo, J. Jacques-Boisard.
2000. Periosteal bone growth rates in extant ratites (ostriche and emu).
Implications for assessing growth in dinosaurs. Comptes Rendus de l’Académie
Des Sciences - Series III - Sciences de La Vie, 323 (6): 543–550. https://doi.org/10.1016/S0764-4469(00)00181-5
Cerda, I. A., C. P. Tambussi, F. J. Degrange. 2014.
Unexpected microanatomical variation among Eocene Antarctic stem penguins
(Aves: Sphenisciformes). Historical Biology, 27 (5): 549–557. https://doi.org/10.1080/08912963.2014.896907
Chinsamy, A. 1990. Physiological implications of the bone
histology of Syntarsus rhodesiensis(Saurischia: Theropoda). Palaeontologia Africana, 27: 77–82.
Chinsamy, A., L. M. Chiappe, P. Dodson. 1995. Mesozoic
avian bone microstructure: physiological implications. Paleobiology, 21
(04): 561–574. https://doi.org/10.1017/S0094837300013543
Chinsamy, A. 1997. Assessing the biology of fossil
vertebrates through bone histology. Palaeontologia Africana, 33: 29–35.
Chinsamy, A., L. D. Martin, P. Dodson. 1998. Bone
microstructure of the diving Hesperornis
and the volant Ichthyornis from
the Niobrara Chalk of western Kansas. Cretaceous Research, 19 (2):
225–235. https://doi.org/10.1006/cres.1997.0102
Chinsamy, A. 2002. Bone microstructure of early birds. In:
Chiappe L. M., L. M. Witmer (Eds). Mesozoic Birds: Above the Heads of
Dinosaurs. University of California Press, Berkeley, 421–431.
Chinsamy, A., D. Angst, A. Canoville, U. B. Göhlich. 2020a.
Bone histology yields insights into the biology of the extinct elephant birds
(Aepyornithidae) from Madagascar. Biological Journal of the Linnean Society,
130 (2): 268–295. https://doi.org/10.1093/biolinnean/blaa013
Chinsamy, A., J. Marugán‐Lobón, F. J. Serrano, L. Chiappe. 2020b. Osteohistology and
life history of the basal pygostylian, Confuciusornis
sanctus. The Anatomical Record, 303 (4): 949–962. https://doi.org/10.1002/ar.24282
Chinsamy, A., N. M. Warburton. 2020. Ontogenetic growth and
the development of a unique fibrocartilage entheses in Macropus fuliginosus. Zoology, 144: 125860. https://doi.org/10.1016/j.zool.2020.125860
Chinsamy, A., T. H. Worthy. 2021. Histovariability and
palaeobiological implications of the bone histology of the dromornithid, Genyornis
newtoni. Diversity, 13 (5): 219. https://doi.org/10.3390/d13050219
Cubo, J., N. Le Roy, C. Martinez-Maza, L. Montes. 2012.
Paleohistological estimation of bone growth rate in extinct archosaurs. Paleobiology,
38 (2): 335–349. https://doi.org/10.1666/08093.1
Curry Rogers, K., G. M. Erickson. 2005. Sauropod histology:
microscopic views on the lives of giants. In: K. Curry Rogers (Ed). The
Sauropods: Evolution and Paleobiology. University of California Press, Oakland,
303–326. https://doi.org/10.1525/9780520932333-014
Dabee, V. P. 2013. Comparison of the long bone
microstructure of two southern African marine birds, the Cape gannet (Morus capensis) and the African
penguin (Spheniscus demersus) with respect to their aquatic adaptations.
Bachelor thesis, University of Cape Town, 1–68.
D’Emic, M. D., R. B. J. Benson. 2013. Measurement,
variation, and scaling of osteocyte lacunae: a case study in birds. Bone,
57 (1): 300–310. https://doi.org/10.1016/j.bone.2013.08.010
De Buffrénil, V., A. Quilhac. 2021. Bone tissue types: a brief
account of currently used categories. In: de Buffrénil, V., A. J. de
Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal Histology and
Paleohistology. CRC Press, Boca Raton and London, 147–182. https://doi.org/10.1201/9781351189590-8
De Buffrénil, V., A. Quilhac, J. Cubo. 2021. Accretion rate
and histological features of bone. In: de Buffrénil, V., A. J. de
Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal Histology and
Paleohistology. CRC Press, Boca Raton and London, 221–228. https://doi.org/10.1201/9781351189590-10
De Margerie, E., J. Cubo, J. Castanet. 2002. Bone typology
and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). Comptes
Rendus: Biologies, 325 (3): 221–230. https://doi.org/10.1016/s1631-0691(02)01429-4
De Margerie, E., J.-P. Robin, D. Verrier, J. Cubo, R. Groscolas,
J. Castanet. 2004. Assessing a relationship between bone microstructure and
growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal
of Experimental Biology, 207 (5): 869–879. https://doi.org/10.1242/jeb.00841
De Ricqlès, A., E. Bourdon, L. J. Legendre, J. Cubo. 2016.
Preliminary assessment of bone histology in the extinct elephant bird Aepyornis
(Aves, Palaeognathae) from Madagascar. Comptes Rendus Palevol, 15
(1–2): 197–208. https://doi.org/10.1016/j.crpv.2015.01.003
Dernov, V. S., N. I. Udovichenko. 2020. Trace fossils from
locality of Eocene vertebrates «Ikovo» (Lugansk region). In: Peresadko,
V. A., A. V. Matveev, I. V. Vysochansky [et al.]. (Eds). Latest problems of
geology: materials of scientific and practical conference in memoriam to V. P.
Makrydin; Jun 02–04; Kharkiv. V. N. Karazin Kharkiv National University,
Kharkiv, 19–21. [In Russian]
Dernov, V., M. Udovychenko. 2023. Trace fossils from the
Buchak Formation (Lutetian, Eocene) of Luhansk Oblast, Ukraine, and their
palaeogeographic significance. Geo&Bio, 24: 106–140. [In
Ukrainian] https://doi.org/10.15407/gb2408
Dobrovolsky, S. 2023a. Preparation of ground sections using
UV-curable acrylic adhesives. Biosystems Diversity, 31 (1): 34–53.
https://doi.org/10.15421/012305
Dobrovolsky, S. 2023b. Bone microstructure of bony-toothed
birds (Odontopterygiformes) from the Eocene of Ikove, Ukraine: preliminary
paleobiological implications. Historical Biology, 35 (8). http://doi.org/10.1080/08912963.2023.2228335
Drozdowska, J., W. Meissner. 2014. Changes in endosteal
cell layer number of long bones are not appropriate for ageing birds: evidence
from Baltic razorbills (Alca torda Linnaeus,
1758). Zoologischer Anzeiger, 253 (6): 493–496. http://doi.org/10.1016/j.jcz.2014.07.001
Erickson, G. M. 2005. Assessing dinosaur growth patterns: a
microscopic revolution. Trends in Ecology & Evolution, 20 (12):
677–684. http://doi.org/10.1016/j.tree.2005.08.012
Erickson, G. M., K. Curry Rogers, D. J. Varricchio, M. A. Norell,
X. Xu. 2007. Growth patterns in brooding dinosaurs reveals the timing of sexual
maturity in non-avian dinosaurs and genesis of the avian condition. Biology
Letters, 3 (5): 558–561. http://doi.org/10.1098/rsbl.2007.0254
Furness, R. W. 1994. An estimate of the quantity of squid
consumed by seabirds in the eastern North Atlantic and adjoining seas. Fisheries Research, 21: 165–177. http://doi.org/10.1016/0165-7836(94)90102-3
Hoffmann, R., J. Bestwick, G. Berndt, D. Fuchs, C. Klug.
2020. Pterosaurs ate soft-bodied cephalopods (Coleoidea). Scientific Reports,
10 (1): 1230. https://doi.org/10.1038/s41598-020-57731-2
Howard, H. 1957. A gigantic ‘‘toothed’’ marine bird from
the Miocene of California. Bulletin of the Department of Geology of the
Santa Barbara Museum of Natural History, 1: 1–23.
Howard H., J. A. White. 1962. A second record of Osteodontornis,
Miocene “toothed” bird. Los Angeles County Museum Contributions in Science,
52: 1–12.
Humphries S., R. H. C. Bonser, M. P. Witton, D. M. Martill.
2007. Did pterosaurs feed by skimming? Physical modelling and anatomical
evaluation of an unusual feeding method. PLoS Biology, 5 (8):
204. https://doi.org/10.1371/journal.pbio.0050204
Klevezal, G. A. 1972. О связи скорости роста животного и
образования годовых слоев в кости млекопитающих. [On the relationship between
the rate of growth of an animal and the formation of annual layers in the bones
of mammals]. Zhurnal obshchey biologii, 33 (2): 166–175. [In
Russian]
Klevezal, G. A., E. M. Smirina. 2016. Регистрирующие
структуры наземных позвоночных. Краткая история и современное состояние
исследований [Registering structures of terrestrial vertebrates. Brief history
and modern state of knowledge]. Zoologicheskiy zhurnal, 95 (8): 872–896.
[In Russian] http://doi.org/10.7868/S0044513416080079
Kloess, P. A., A. W. Poust, T. A. Stidham. 2020. Earliest
fossils of giant-sized bony-toothed birds (Aves: Pelagornithidae) from the
Eocene of Seymour Island, Antarctica. Scientific Reports, 10:
18286. https://doi.org/10.1038/s41598-020-75248-6
Kuehn, A. L., A. H. Lee, R. P. Main, E. L. R. Simons. 2019.
The effects of growth rate and biomechanical loading on bone laminarity within
the emu skeleton. PeerJ, 7: e7616. https://doi.org/10.7717/peerj.7616
Lanyon, L. E., C. T. Rubin. 1984. Static vs dynamic loads
as an influence on bone remodelling. Journal of Biomechanics, 17 (12):
897–905. https://doi.org/10.1016/0021-9290(84)90003-4
Lee, A. H., A. K. Huttenlocker, K. Padian, H. N. Woodward.
2013. Analysis of growth rates. In: Padian, K., E.-T. Lamm (Eds.). Bone
Histology of Fossil Tetrapods. University of California Press, Berkeley,
217–251. https://doi.org/10.1525/california/9780520273528.003.0008
Lewis, J. C. 1979. Periosteal layers do not indicate ages
of sandhill cranes. The Journal of Wildlife Management, 43 (1):
269–271. https://doi.org/10.2307/3800672
Louchart, A., J. Y. Sire, C. Mourer-Chauviré, D. Geraads, L.
Viriot, V. de Buffrénil. 2013. Structure and growth pattern of pseudoteeth in Pelagornis mauretanicus (Aves,
Odontopterygiformes, Pelagornithidae). PLoS One, 8 (11): e80372. https://doi.org/10.1371/journal.pone.0080372
Louchart, A., V. de Buffrénil, E. Bourdon, M. Dumont, L. Viriot,
J. Y. Sire. 2018. Bony pseudoteeth of extinct pelagic birds (Aves,
Odontopterygiformes) formed through a response of bone cells to tooth-specific
epithelial signals under unique conditions. Scientific Reports, 8
(1): 12952. https://doi.org/10.1038/s41598-018-31022-3
Luckhurst, B. E. 2018. A preliminary assessment of the
ecological role and importance of squid in the pelagic trophic web of the
northwest Atlantic Ocean including the Sargasso Sea. Collective Volume of Scientific Papers. ICCAT, 74 (7): 3679–3691.
Marsà, J. A. G., F. L. Agnolín, F. Novas. 2017. Bone
microstructure of Vegavis iaai
(Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic
Peninsula. Historical Biology, 31 (2): 1–5. https://doi.org/10.1080/08912963.2017.1348503
Masden, E. A., D. T. Haydon, A. D. Fox, R. W. Furness.
2010. Barriers to movement: Modelling energetic costs of avoiding marine wind
farms amongst breeding seabirds. Marine Pollution Bulletin, 60 (7):
1085–1091. https://doi.org/10.1016/j.marpolbul.2010.01.016
Massare, J. A. 1987. Tooth morphology and prey preference
of Mesozoic marine reptiles. Journal of
Vertebrate Paleontology, 7 (2):
121–137. https://doi.org/10.1080/02724634.1987.10011647
Mayr, G. 2011. Cenozoic mystery birds – on the phylogenetic
affinities of bony-toothed birds (Pelagornithidae). Zoologica Scripta, 40
(5): 448–467. https://doi.org/10.1111/j.1463-6409.2011.00484.x
Mayr, G., E. Zvonok. 2012. A new genus and species of
Pelagornithidae with well-preserved pseudodentition and further avian remains
from the middle Eocene of the Ukraine. Journal of Vertebrate Paleontology,
32 (4): 914–925. https://doi.org/10.1080/02724634.2012.676114
Mayr, G., V. L. De Pietri, L. Love, A. Mannering, R. P. Scofield.
2019. Oldest, smallest and phylogenetically most basal pelagornithid, from the
early Paleocene of New Zealand, sheds light on the evolutionary history of the
largest flying birds. Papers in Palaeontology, 7 (1): 217–233. https://doi.org/10.1002/spp2.1284
Meister, W. 1951. Changes in histological structure of the
long bones of birds during the molt. The Anatomical Record, 3:
1–21. https://doi.org/10.1002/ar.1091110102
Miller, C. V., M. Pittman. 2021. The diet of early birds
based on modern and fossil evidence and a new framework for its reconstruction.
Biological Reviews, 96: 2058–2112. https://doi.org/10.1111/brv.12743
Milner, A. C., S. A. Walsh. 2009. Avian brain evolution:
new data from Palaeogene birds (Lower Eocene) from England. Zoological
Journal of the Linnean Society, 155 (1): 198–219. https://doi.org/10.1111/j.1096-3642.2008.00443.x
Mlíkovský, J. 2009. Evolution of the Cenozoic marine
avifaunas of Europe. Annalen des Naturhistorischen Museums in Wien, 111A:
357–374.
Monfroy, Q. T., M. Kundrát. 2021. The osteohistological
variability in the evolution of basal avialans. Acta Zoologica, 103
(1): 1–28. https://doi.org/10.1111/azo.12396
Montes L., N. Le Roy, M. Perret, V. De Buffrenil, J. Castanet,
J. Cubo. 2007. Relationships between bone growth rate, body mass and resting
metabolic rate in growing amniotes: a phylogenetic approach. Biological
Journal of the Linnean Society, 92 (1): 63–76. https://doi.org/10.1111/j.1095-8312.2007.00881.x
Montes, L., J. Castanet, J. Cubo. 2010. Relationship
between bone growth rate and bone tissue organization in amniotes: first test
of Amprino’s rule in a phylogenetic context. Animal Biology, 60 (1):
25–41. https://doi.org/10.1163/157075610X12610595764093
Newman, S., S. Leeson. 1999. The effect of feed deprivation
and subsequent refeeding on the bone characteristics of aged hens. Poultry
Science, 78 (12): 1658–1663. https://doi.org/10.1093/ps/78.12.1658
O’Connor, J. K., M. Wang, Sh. Zhou, Zh. Zhou. 2015.
Osteohistology of the Lower Cretaceous Yixian Formation ornithuromorph (Aves) Iteravis huchzermeyeri. Palaeontologia
Electronica 18.2.35A: 1–11. https://doi.org/10.26879/520
Özden, Ö., N. Erkan. 2011. A preliminary study of amino
acidand mineral profiles of importantand estimable 21 seafood species. British Food Journal, 113 (4): 457–469. https://doi.org/10.1108/00070701111123943
Padian, K. 2013. Why study the bone microstructure of
fossil tetrapods? In: Padian, K., E.-T. Lamm (Eds). Bone Histology of
Fossil Tetrapods. University of California Press, Berkeley, 1–11. https://doi.org/10.1525/9780520955110-003
Padian, K., S. Werning, J. R. Horner. 2016. A hypothesis of
differential secondary bone formation in dinosaurs. Comptes Rendus Palevol,
15 (1-2): 40–48. https://doi.org/10.1016/j.crpv.2015.03.002
Padian K., H. N. Woodward. 2021. Archosauromorpha:
Avemetatarsalia – dinosaurs and their relatives. In: de Buffrénil, V.,
A. J. de Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal
Histology and Paleohistology. CRC Press, Boca Raton and London, 511–549. https://doi.org/10.1201/9781351189590-27
Pratt, I. V., J. D. Johnston, E. Walker, D. M. L. Cooper.
2018. Interpreting the three-dimensional orientation of vascular canals and
cross-sectional geometry of cortical bone in birds and bats. Journal of
Anatomy, 232 (6): 931–942. https://doi.org/10.1111/joa.12803
Prondvai, E., P. E. Witten, A. Abourachid, A. Huysseune, D.
Adriaens. 2019. Extensive chondroid bone in juvenile duck limbs hints at
accelerated growth mechanism in avian skeletogenesis. Journal of Anatomy,
236 (3): 463–473. https://doi.org/10.1111/joa.13109
Rubin, C. T., L. E. Lanyon. 1984. Regulation of bone
formation by applied dynamic loads. Journal of Bone and Joint Surgery, 66-A
(3): 397–402.
Sandvig, E. M., T. Coulson,
S. M. Clegg. 2019. The effect of insularity on avian growth rates and
implications for insular body size evolution. Proceedings of the Royal
Society B: Biological Sciences, 286 (1894): 20181967. https://doi.org/10.1098/rspb.2018.1967
Sandvig, E. M., T. Coulson, B. C. Robertson, W. E. Feeney, S.
M. Clegg. 2022. Insular nestling growth and its relationship to parental care
effort in Silvereyes, Zosterops
lateralis. Emu — Austral Ornithology, 122 (3-4): 193–202. https://doi.org/10.1080/01584197.2022.2105723
Schucht, P. J., N. Klein, M. Lambertz. 2021. What’s my age
again? On the ambiguity of histology-based skeletochronology. Proceedings of
the Royal Society B, 288: 20211166. https://doi.org/10.1098/rspb.2021.1166
Schultz, M. 2001. Paleohistopathology of bone: a new
approach to the study of ancient diseases. American Journal of Physical
Anthropology, Suppl. 33: 106–47.
https://doi.org/10.1002/ajpa.10024.abs
Starck, J. M., A. Chinsamy A. 2002. Bone microstructure and
developmental plasticity in birds and other dinosaurs. Journal of Morphology,
254 (3): 232–246. https://doi.org/10.1002/jmor.10029
Sukhanova, N. S. 2021. Age-related changes of the
histological structure in the limb bones of the domestic fowl. Agricultural
Science Euro-North-East, 22 (2): 264–277. [In Russian]. https://doi.org/10.30766/2072-9081.2021.22.2.264-277
Tomassini, R.L., M. D. Pesquero, M. C. Garrone [et al.]
2021. First osteohistological and histotaphonomic approach of Equus occidentalis
Leidy, 1865 (Mammalia, Equidae) from the late Pleistocene of Rancho La Brea
(California, USA). PLoS ONE, 16 (12): e0261915. https://doi.org/10.1371/journal.pone.0261915
Tsukamoto K., M. J. Miller. 2021. The mysterious feeding
ecology of leptocephali: a unique strategy of consuming marine snow materials. Fisheries
Science, 87: 11–29. https://doi.org/10.1007/s12562-020-01477-3
Turvey, S. T., O. R. Green, R. N. Holdaway. 2005. Cortical
growth marks reveal extended juvenile development in New Zealand moa. Nature,
435 (7044): 940–943. https://doi.org/10.1038/nature03635
Udovichenko, N. I. 2009. Ichthyofauna and age of the
Paleogene sands of Osinove area, Lugansk region. In: Fossil fauna and
flora of Ukraine: paleoecological and stratigraphic aspects. Collection of
Scientific Works of the Institute of Geological Sciences of the National
Academy of Sciences of Ukraine. Institute of Geological Sciences of the
National Academy of Sciences of Ukraine, Kyiv, 255–261. [In Russian]
Van Soest, R. W. M., W. L. van Utrecht. 1971. The layered
structure of bones of birds as a possible indication of age. Bijdragen tot
de Dierkunde, 41 (1): 61–66. https://doi.org/10.1163/26660644-04101008
Wang, M., Zh. Li, Zh. Zhou. 2017. Insight into the growth
pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine
bird. Proceedings of the National Academy of Sciences, 114 (43): 11470–11475.
https://doi.org/10.1073/pnas.1707237114
Werning, S. A. 2013.
Evolution of bone histological characters in amniotes, and the implications for
the evolution of growth and metabolism. Ph.D. thesis, University of California,
Berkeley, 1–445.
Westeberg, H. 1990. A proposal regarding the source of
nutrition of leptocephalus larvae. Internationale Revue der gesamten
Hydrobiologie und Hydrographie, 75 (6): 863–864. https://doi.org/10.1002/iroh.19900750632
Wilson, L. E., K. Chin. 2014. Comparative osteohistology of
Hesperornis with reference to
pygoscelid penguins: the effects of climate and behaviour on avian bone
microstructure. Royal Society Open Science, 1: 140245. https://doi.org/10.1098/rsos.140245
Wilson, S., B. H. Thorp. 1998. Estrogen and cancellous bone
loss in the fowl. Calcified Tissue International, 62 (6):
506–511. https://doi.org/10.1007/s002239900470
Woodward, H. N., K. Padian, A. H. Lee. 2013.
Skeletochronology. In: Padian, K., E.-T. Lamm (Eds). Bone Histology
of Fossil Tetrapods. University of California Press, Berkeley, 195–215. https://doi.org/10.1525/california/9780520273528.003.0007
Yamada, M., C. Chen, T. Sugiyama, W. K. Kim. 2021. Effect
of age on bone structure parameters in laying hens. Animals, 11 (2):
570. https://doi.org/10.3390/ani11020570
Yan, J., Z. Zhang. 2020. Post‐hatching growth of the limbs in an altricial bird species. Veterinary
Medicine and Science, 7 (1): 210–218. https://doi.org/10.1002/vms3.357
Zelenkov, N. V., E. N. Kurochkin. 2015. Класс Aves [Class
Aves]. In: Kurochkin E. N., A. V. Lopatin, N. V. Zelenkov (Eds). Fossil
vertebrates of Russia and adjacent countries. Fossil reptiles and birds. Part 3.
GEOS, Moscow, 86–290. [In Russian]
Zhao, S. C., X. Q. Teng, D. L. Xu, X. Chi, M. Ge, S. W. Xu.
2020. Influences of low level of dietary calcium on bone characters in laying
hens. Poultry Science, 99: 7084–7091. https://doi.org/10.1016/j.psj.2020.08.057
Zvonok, E., M. Udovichenko, A. Bratishko. 2012. Location of
Eocene vertebrates Ikove (Luhansk region, Ukraine): ecological and taphonomic
analysis. Paleontological review, 44: 107–122. [In Ukrainian]