GEO&BIO • 2023, vol. 24, pp. 141–158

https://doi.org/10.53452/gb2409

Cite as

Dobrovolsky, S., L. Gorobets. 2023. Growth duration, life history and ecological traits of bony-toothed birds (Odontopterygiformes): implications from bone histology. Geo&Bio, 24: 141–158. [In English, with Ukrainian summary]

Growth duration, life history and ecological traits of bony-toothed birds (Odontopterygiformes): implications from bone histology

Stanislav Dobrovolsky orcidhttps://orcid.org/0000-0002-4861-6408

Leonid Gorobets orcid https://orcid.org/0000-0002-5492-7878

National Museum of Natural History, National Academy of Sciences of Ukraine (Kyiv, Ukraine)

pdf:   pdf

Abstract

Bony-toothed birds (Odontopterygiformes), an order of seabirds that existed throughout most of the Cenozoic, had unusually fragile, thin-walled bones. This complicates their study and draws attention to microscopic methods, which are applicable even to fragmentary remains. The histological structure of long bones of the limbs of two species from the lower Lutetian locality Ikove (Luhansk Oblast, Ukraine) was studied: Lutetodontopteryx tethyensis and cf. Dasornis sp., representing the two main clades of the order. The well-preserved microstructure of the bones sheds light on the growth pattern of these birds, which turned out to be similar to that of recent Neognathae: with rapid and typically sharply terminated bone growth. This resulted in the apposition of azonal woven-parallel tissue, covered with outer and inner circumferential layers (OCL and ICL), usually sharply delimited from it. Like in other birds, osteohistological features allow to distinguish gross developmental stages of the animals (juveniles, young adults, and older adults) and provide hints about events of their life history, such as egg-laying or moulting, which enhance the development of resorption cavities and, probably, secondary osteons. The humeri of L. tethyensis show a structure of the outer cortex unusual for birds, which indicates a less abrupt than usual growth cessation. Age determination from the sub-layers in the inner circumferential layer (a method which works in some species of recent birds but not in other) proved impossible for L. tethyensis; for cf. Dasornis sp. the question remains open. The duration of the growth in the studied species cannot currently be determined precisely, but can be estimated at 102 days, probably (in contrast to previous inferences) less than one year. A relatively short development supports the hypothesis about Odontopterygiformes being specialised consumers of squid, based on the morphology of the pseudoteeth. Eating squid can be an explanation of the observed osteohistological features, which could be caused by calcium deficiency.

Key words: Odontopterygiformes, Pelagornithidae, osteohistology, growth, feeding

Correspondence to

Stanislav Dobrovolsky; National Museum of Natural History, NAS of Ukraine, 15 Bohdan Khmelnitsky Street, Kyiv, 01030 Ukraine; Email: stas000@gmail.com

Article info

Submitted: 08.06.2023. Revised: 30.06.2023. Accepted: 30.06.2023.

References

Alfonso-Carrillo, C., C. Benavides-Reyes, J. de los Mozos, N. Dominguez-Gasca, E. Sanchez-Rodríguez, A. I. Garcia-Ruiz, A. B. Rodriguez-Navarro. 2021. Relationship between bone quality, egg production and eggshell quality in laying hens at the end of an extended production cycle (105 weeks). Animals, 11: 623. https://doi.org/10.3390/ani11030623

Angst D., A. Chinsamy, L. Steel, J. P. Hume. 2017. Bone histology sheds new light on the ecology of the dodo (Raphus cucullatus, Aves, Columbiformes). Scientific Reports, 7 (1): 7993. https://doi.org/10.1038/s41598-017-08536-3

Atterholt J., A. W. Poust, G. M. Erickson, J. K. O’Connor. 2021. Intraskeletal osteohistovariability reveals complex growth strategies in a Late Cretaceous enantiornithine. Frontiers in Earth Science, 9: 640220. https://doi.org/10.3389/feart.2021.640220

Atterholt J., H. N. Woodward. 2021. A histological survey of avian post-natal skeletal ontogeny. PeerJ, 9: e12160. https://doi.org/10.7717/peerj.12160

Bailleul A. M., J. O'Connor, M. H. Schweitzer. 2019. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ, 7: e7764. https://doi.org/10.7717/peerj.7764

Benavides-Reyes, C., A. B. Rodriguez-Navarro, H. A. McCormack, B. K. Eusemann, N. Dominguez-Gasca, P. Alvarez-Lloret, R. H. Fleming, S. Petow, I. C. Dunn. 2021. Comparative analysis of the morphology, chemistry and structure of the tibiotarsus, humerus and keel bones in laying hens. British Poultry Science, 62 (6): 795–803. https://doi.org/10.1080/00071668.2021.1943310

Bourdon E., J. Castanet, A. de Ricqles, P. Scofield, A. Tennyson, H. Lamrous, J. Cubo. 2009. Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae). Biology Letters, 5 (5): 639–642. https://doi.org/10.1098/rsbl.2009.0310

Bourdon E. 2011. The Pseudo-toothed birds (Aves, Odontopterygiformes) and their bearing on the early evolution of modern birds. In: Dyke, G., G. Kaiser (Eds). Living Dinosaurs: The Evolutionary History of Modern Birds. Wiley-Blackwell, Chichester, 209–234. https://doi.org/10.1002/9781119990475.ch8

Broughton, J. M., D. Rampton, K. Holanda. 2002. A test of an osteologically based age determination technique in the Double-crested CormorantPhalacrocorax auritus. Ibis, 144 (1): 143–146. https://doi.org/10.1046/j.0019-1019.2001.00004.x

Canoville, A.; A. Chinsamy, D. Angst. 2022. New comparative data on the long bone microstructure of large extant and extinct flightless birds. Diversity, 14: 298. https://doi.org/10.3390/d14040298

Carrier, D. R., J. Auriemma. 1992. A developmental constraint on the fledging time of birds. Biological Journal of the Linnean Society, 47 (1): 61–77. https://doi.org/10.1111/j.1095-8312.1992.tb00656.x

Castanet, J., K. Curry Rogers, J. Cubo, J. Jacques-Boisard. 2000. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus de l’Académie Des Sciences - Series III - Sciences de La Vie, 323 (6): 543–550. https://doi.org/10.1016/S0764-4469(00)00181-5

Cerda, I. A., C. P. Tambussi, F. J. Degrange. 2014. Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes). Historical Biology, 27 (5): 549–557. https://doi.org/10.1080/08912963.2014.896907

Chinsamy, A. 1990. Physiological implications of the bone histology of Syntarsus rhodesiensis(Saurischia: Theropoda). Palaeontologia Africana, 27: 77–82.

Chinsamy, A., L. M. Chiappe, P. Dodson. 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology, 21 (04): 561–574. https://doi.org/10.1017/S0094837300013543

Chinsamy, A. 1997. Assessing the biology of fossil vertebrates through bone histology. Palaeontologia Africana, 33: 29–35.

Chinsamy, A., L. D. Martin, P. Dodson. 1998. Bone microstructure of the diving Hesperornis and the volant Ichthyornis from the Niobrara Chalk of western Kansas. Cretaceous Research, 19 (2): 225–235. https://doi.org/10.1006/cres.1997.0102

Chinsamy, A. 2002. Bone microstructure of early birds. In: Chiappe L. M., L. M. Witmer (Eds). Mesozoic Birds: Above the Heads of Dinosaurs. University of California Press, Berkeley, 421–431.

Chinsamy, A., D. Angst, A. Canoville, U. B. Göhlich. 2020a. Bone histology yields insights into the biology of the extinct elephant birds (Aepyornithidae) from Madagascar. Biological Journal of the Linnean Society, 130 (2): 268–295. https://doi.org/10.1093/biolinnean/blaa013

Chinsamy, A., J. Marugán‐Lobón, F. J. Serrano, L. Chiappe. 2020b. Osteohistology and life history of the basal pygostylian, Confuciusornis sanctus. The Anatomical Record, 303 (4): 949–962. https://doi.org/10.1002/ar.24282

Chinsamy, A., N. M. Warburton. 2020. Ontogenetic growth and the development of a unique fibrocartilage entheses in Macropus fuliginosus. Zoology, 144: 125860. https://doi.org/10.1016/j.zool.2020.125860

Chinsamy, A., T. H. Worthy. 2021. Histovariability and palaeobiological implications of the bone histology of the dromornithid, Genyornis newtoni. Diversity, 13 (5): 219. https://doi.org/10.3390/d13050219

Cubo, J., N. Le Roy, C. Martinez-Maza, L. Montes. 2012. Paleohistological estimation of bone growth rate in extinct archosaurs. Paleobiology, 38 (2): 335–349. https://doi.org/10.1666/08093.1

Curry Rogers, K., G. M. Erickson. 2005. Sauropod histology: microscopic views on the lives of giants. In: K. Curry Rogers (Ed). The Sauropods: Evolution and Paleobiology. University of California Press, Oakland, 303–326. https://doi.org/10.1525/9780520932333-014

Dabee, V. P. 2013. Comparison of the long bone microstructure of two southern African marine birds, the Cape gannet (Morus capensis) and the African penguin (Spheniscus demersus) with respect to their aquatic adaptations. Bachelor thesis, University of Cape Town, 1–68.

D’Emic, M. D., R. B. J. Benson. 2013. Measurement, variation, and scaling of osteocyte lacunae: a case study in birds. Bone, 57 (1): 300–310. https://doi.org/10.1016/j.bone.2013.08.010

De Buffrénil, V., A. Quilhac. 2021. Bone tissue types: a brief account of currently used categories. In: de Buffrénil, V., A. J. de Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal Histology and Paleohistology. CRC Press, Boca Raton and London, 147–182. https://doi.org/10.1201/9781351189590-8

De Buffrénil, V., A. Quilhac, J. Cubo. 2021. Accretion rate and histological features of bone. In: de Buffrénil, V., A. J. de Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal Histology and Paleohistology. CRC Press, Boca Raton and London, 221–228. https://doi.org/10.1201/9781351189590-10

De Margerie, E., J. Cubo, J. Castanet. 2002. Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). Comptes Rendus: Biologies, 325 (3): 221–230. https://doi.org/10.1016/s1631-0691(02)01429-4

De Margerie, E., J.-P. Robin, D. Verrier, J. Cubo, R. Groscolas, J. Castanet. 2004. Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). Journal of Experimental Biology, 207 (5): 869–879. https://doi.org/10.1242/jeb.00841

De Ricqlès, A. J., K. Padian, J. R. Horner, E.-T. Lamm, N. Myhrvold. 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journal of Vertebrate Paleontology, 23 (2): 373–386. https://doi.org/10.1671/0272-4634(2003)023[0373:OOCSTA]2.0.CO;2

De Ricqlès, A., E. Bourdon, L. J. Legendre, J. Cubo. 2016. Preliminary assessment of bone histology in the extinct elephant bird Aepyornis (Aves, Palaeognathae) from Madagascar. Comptes Rendus Palevol, 15 (1–2): 197–208. https://doi.org/10.1016/j.crpv.2015.01.003

Dernov, V. S., N. I. Udovichenko. 2020. Trace fossils from locality of Eocene vertebrates «Ikovo» (Lugansk region). In: Peresadko, V. A., A. V. Matveev, I. V. Vysochansky [et al.]. (Eds). Latest problems of geology: materials of scientific and practical conference in memoriam to V. P. Makrydin; Jun 02–04; Kharkiv. V. N. Karazin Kharkiv National University, Kharkiv, 19–21. [In Russian]

Dernov, V., M. Udovychenko. 2023. Trace fossils from the Buchak Formation (Lutetian, Eocene) of Luhansk Oblast, Ukraine, and their palaeogeographic significance. Geo&Bio, 24: 106–140. [In Ukrainian] https://doi.org/10.15407/gb2408

Dobrovolsky, S. 2023a. Preparation of ground sections using UV-curable acrylic adhesives. Biosystems Diversity, 31 (1): 34–53. https://doi.org/10.15421/012305

Dobrovolsky, S. 2023b. Bone microstructure of bony-toothed birds (Odontopterygiformes) from the Eocene of Ikove, Ukraine: preliminary paleobiological implications. Historical Biology, 35 (8). http://doi.org/10.1080/08912963.2023.2228335

Drozdowska, J., W. Meissner. 2014. Changes in endosteal cell layer number of long bones are not appropriate for ageing birds: evidence from Baltic razorbills (Alca torda Linnaeus, 1758). Zoologischer Anzeiger, 253 (6): 493–496. http://doi.org/10.1016/j.jcz.2014.07.001

Erickson, G. M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology & Evolution, 20 (12): 677–684. http://doi.org/10.1016/j.tree.2005.08.012

Erickson, G. M., K. Curry Rogers, D. J. Varricchio, M. A. Norell, X. Xu. 2007. Growth patterns in brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and genesis of the avian condition. Biology Letters, 3 (5): 558–561. http://doi.org/10.1098/rsbl.2007.0254

Furness, R. W. 1994. An estimate of the quantity of squid consumed by seabirds in the eastern North Atlantic and adjoining seas. Fisheries Research, 21: 165–177. http://doi.org/10.1016/0165-7836(94)90102-3

Hoffmann, R., J. Bestwick, G. Berndt, D. Fuchs, C. Klug. 2020. Pterosaurs ate soft-bodied cephalopods (Coleoidea). Scientific Reports, 10 (1): 1230. https://doi.org/10.1038/s41598-020-57731-2

Howard, H. 1957. A gigantic ‘‘toothed’’ marine bird from the Miocene of California. Bulletin of the Department of Geology of the Santa Barbara Museum of Natural History, 1: 1–23.

Howard H., J. A. White. 1962. A second record of Osteodontornis, Miocene “toothed” bird. Los Angeles County Museum Contributions in Science, 52: 1–12.

Humphries S., R. H. C. Bonser, M. P. Witton, D. M. Martill. 2007. Did pterosaurs feed by skimming? Physical modelling and anatomical evaluation of an unusual feeding method. PLoS Biology, 5 (8): 204. https://doi.org/10.1371/journal.pbio.0050204

Klevezal, G. A. 1972. О связи скорости роста животного и образования годовых слоев в кости млекопитающих. [On the relationship between the rate of growth of an animal and the formation of annual layers in the bones of mammals]. Zhurnal obshchey biologii, 33 (2): 166–175. [In Russian]

Klevezal, G. A., E. M. Smirina. 2016. Регистрирующие структуры наземных позвоночных. Краткая история и современное состояние исследований [Registering structures of terrestrial vertebrates. Brief history and modern state of knowledge]. Zoologicheskiy zhurnal, 95 (8): 872–896. [In Russian] http://doi.org/10.7868/S0044513416080079

Kloess, P. A., A. W. Poust, T. A. Stidham. 2020. Earliest fossils of giant-sized bony-toothed birds (Aves: Pelagornithidae) from the Eocene of Seymour Island, Antarctica. Scientific Reports, 10: 18286. https://doi.org/10.1038/s41598-020-75248-6

Klomp, N. I., R. W. Furness. 1992. A technique which may allow accurate determination of the age of adult birds. Ibis, 134 (3): 245–249. https://doi.org/10.1111/j.1474-919X.1992.tb03806.x

Ksepka, D. T. 2014. Flight performance of the largest volant bird. PNAS, 111 (29): 10624–10629. https://doi.org/10.1073/pnas.1320297111

Kuehn, A. L., A. H. Lee, R. P. Main, E. L. R. Simons. 2019. The effects of growth rate and biomechanical loading on bone laminarity within the emu skeleton. PeerJ, 7: e7616. https://doi.org/10.7717/peerj.7616

Lanyon, L. E., C. T. Rubin. 1984. Static vs dynamic loads as an influence on bone remodelling. Journal of Biomechanics, 17 (12): 897–905. https://doi.org/10.1016/0021-9290(84)90003-4

Lee, A. H., A. K. Huttenlocker, K. Padian, H. N. Woodward. 2013. Analysis of growth rates. In: Padian, K., E.-T. Lamm (Eds.). Bone Histology of Fossil Tetrapods. University of California Press, Berkeley, 217–251. https://doi.org/10.1525/california/9780520273528.003.0008

Lewis, J. C. 1979. Periosteal layers do not indicate ages of sandhill cranes. The Journal of Wildlife Management, 43 (1): 269–271. https://doi.org/10.2307/3800672

Louchart, A., J. Y. Sire, C. Mourer-Chauviré, D. Geraads, L. Viriot, V. de Buffrénil. 2013. Structure and growth pattern of pseudoteeth in Pelagornis mauretanicus (Aves, Odontopterygiformes, Pelagornithidae). PLoS One, 8 (11): e80372. https://doi.org/10.1371/journal.pone.0080372

Louchart, A., V. de Buffrénil, E. Bourdon, M. Dumont, L. Viriot, J. Y. Sire. 2018. Bony pseudoteeth of extinct pelagic birds (Aves, Odontopterygiformes) formed through a response of bone cells to tooth-specific epithelial signals under unique conditions. Scientific Reports, 8 (1): 12952. https://doi.org/10.1038/s41598-018-31022-3

Luckhurst, B. E. 2018. A preliminary assessment of the ecological role and importance of squid in the pelagic trophic web of the northwest Atlantic Ocean including the Sargasso Sea. Collective Volume of Scientific Papers. ICCAT, 74 (7): 3679–3691.

Marsà, J. A. G., F. L. Agnolín, F. Novas. 2017. Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula. Historical Biology, 31 (2): 1–5. https://doi.org/10.1080/08912963.2017.1348503

Masden, E. A., D. T. Haydon, A. D. Fox, R. W. Furness. 2010. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollution Bulletin, 60 (7): 1085–1091. https://doi.org/10.1016/j.marpolbul.2010.01.016

Massare, J. A. 1987. Tooth morphology and prey preference of Mesozoic marine reptiles. Journal of Vertebrate Paleontology, 7 (2): 121–137. https://doi.org/10.1080/02724634.1987.10011647

Mayr, G. 2009. Paleogene Fossil Birds. Springer, Heidelberg, 1–262. https://doi.org/10.1007/978-3-540-89628-9

Mayr, G. 2011. Cenozoic mystery birds – on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zoologica Scripta, 40 (5): 448–467. https://doi.org/10.1111/j.1463-6409.2011.00484.x

Mayr, G., E. Zvonok. 2012. A new genus and species of Pelagornithidae with well-preserved pseudodentition and further avian remains from the middle Eocene of the Ukraine. Journal of Vertebrate Paleontology, 32 (4): 914–925. https://doi.org/10.1080/02724634.2012.676114

Mayr, G. 2017. Avian Evolution. John Wiley & Sons Ltd, Chichester, 1–293. https://doi.org/10.1002/9781119020677

Mayr, G., V. L. De Pietri, L. Love, A. Mannering, R. P. Scofield. 2019. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds. Papers in Palaeontology, 7 (1): 217–233. https://doi.org/10.1002/spp2.1284

Meister, W. 1951. Changes in histological structure of the long bones of birds during the molt. The Anatomical Record, 3: 1–21. https://doi.org/10.1002/ar.1091110102

Miller, C. V., M. Pittman. 2021. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. Biological Reviews, 96: 2058–2112. https://doi.org/10.1111/brv.12743

Milner, A. C., S. A. Walsh. 2009. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zoological Journal of the Linnean Society, 155 (1): 198–219. https://doi.org/10.1111/j.1096-3642.2008.00443.x

Mlíkovský, J. 2009. Evolution of the Cenozoic marine avifaunas of Europe. Annalen des Naturhistorischen Museums in Wien, 111A: 357–374.

Monfroy, Q. T., M. Kundrát. 2021. The osteohistological variability in the evolution of basal avialans. Acta Zoologica, 103 (1): 1–28. https://doi.org/10.1111/azo.12396

Montes L., N. Le Roy, M. Perret, V. De Buffrenil, J. Castanet, J. Cubo. 2007. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: a phylogenetic approach. Biological Journal of the Linnean Society, 92 (1): 63–76. https://doi.org/10.1111/j.1095-8312.2007.00881.x

Montes, L., J. Castanet, J. Cubo. 2010. Relationship between bone growth rate and bone tissue organization in amniotes: first test of Amprino’s rule in a phylogenetic context. Animal Biology, 60 (1): 25–41. https://doi.org/10.1163/157075610X12610595764093

Newman, S., S. Leeson. 1999. The effect of feed deprivation and subsequent refeeding on the bone characteristics of aged hens. Poultry Science, 78 (12): 1658–1663. https://doi.org/10.1093/ps/78.12.1658

O’Connor, J. K., M. Wang, Sh. Zhou, Zh. Zhou. 2015. Osteohistology of the Lower Cretaceous Yixian Formation ornithuromorph (Aves) Iteravis huchzermeyeri. Palaeontologia Electronica 18.2.35A: 1–11. https://doi.org/10.26879/520

Olson, S. L. 1985. The fossil record of birds. In: Farner D. S., J. R. King, K. C. Parkes (Eds). Avian Biology. Academic Press, New York, 79–238. https://doi.org/10.1016/B978-0-12-249408-6.50011-X

Özden, Ö., N. Erkan. 2011. A preliminary study of amino acidand mineral profiles of importantand estimable 21 seafood species. British Food Journal, 113 (4): 457–469. https://doi.org/10.1108/00070701111123943

Padian, K. 2013. Why study the bone microstructure of fossil tetrapods? In: Padian, K., E.-T. Lamm (Eds). Bone Histology of Fossil Tetrapods. University of California Press, Berkeley, 1–11. https://doi.org/10.1525/9780520955110-003

Padian, K., S. Werning, J. R. Horner. 2016. A hypothesis of differential secondary bone formation in dinosaurs. Comptes Rendus Palevol, 15 (1-2): 40–48. https://doi.org/10.1016/j.crpv.2015.03.002

Padian K., H. N. Woodward. 2021. Archosauromorpha: Avemetatarsalia – dinosaurs and their relatives. In: de Buffrénil, V., A. J. de Ricqlès, L. Zylberberg, K. Padian (Eds). Vertebrate Skeletal Histology and Paleohistology. CRC Press, Boca Raton and London, 511–549. https://doi.org/10.1201/9781351189590-27

Pratt, I. V., J. D. Johnston, E. Walker, D. M. L. Cooper. 2018. Interpreting the three-dimensional orientation of vascular canals and cross-sectional geometry of cortical bone in birds and bats. Journal of Anatomy, 232 (6): 931–942. https://doi.org/10.1111/joa.12803

Prondvai, E., P. E. Witten, A. Abourachid, A. Huysseune, D. Adriaens. 2019. Extensive chondroid bone in juvenile duck limbs hints at accelerated growth mechanism in avian skeletogenesis. Journal of Anatomy, 236 (3): 463–473. https://doi.org/10.1111/joa.13109

Rubin, C. T., L. E. Lanyon. 1984. Regulation of bone formation by applied dynamic loads. Journal of Bone and Joint Surgery, 66-A (3): 397–402.

Sandvig, E. M., T. Coulson, S. M. Clegg. 2019. The effect of insularity on avian growth rates and implications for insular body size evolution. Proceedings of the Royal Society B: Biological Sciences, 286 (1894): 20181967. https://doi.org/10.1098/rspb.2018.1967

Sandvig, E. M., T. Coulson, B. C. Robertson, W. E. Feeney, S. M. Clegg. 2022. Insular nestling growth and its relationship to parental care effort in Silvereyes, Zosterops lateralis. Emu — Austral Ornithology, 122 (3-4): 193–202. https://doi.org/10.1080/01584197.2022.2105723

Schucht, P. J., N. Klein, M. Lambertz. 2021. What’s my age again? On the ambiguity of histology-based skeletochronology. Proceedings of the Royal Society B, 288: 20211166. https://doi.org/10.1098/rspb.2021.1166

Schultz, M. 2001. Paleohistopathology of bone: a new approach to the study of ancient diseases. American Journal of Physical Anthropology, Suppl. 33: 106–47. https://doi.org/10.1002/ajpa.10024.abs

Starck, J. M., A. Chinsamy A. 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology, 254 (3): 232–246. https://doi.org/10.1002/jmor.10029

Sukhanova, N. S. 2021. Age-related changes of the histological structure in the limb bones of the domestic fowl. Agricultural Science Euro-North-East, 22 (2): 264–277. [In Russian]. https://doi.org/10.30766/2072-9081.2021.22.2.264-277

Tomassini, R.L., M. D. Pesquero, M. C. Garrone [et al.] 2021. First osteohistological and histotaphonomic approach of Equus occidentalis Leidy, 1865 (Mammalia, Equidae) from the late Pleistocene of Rancho La Brea (California, USA). PLoS ONE, 16 (12): e0261915. https://doi.org/10.1371/journal.pone.0261915

Tsukamoto K., M. J. Miller. 2021. The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fisheries Science, 87: 11–29. https://doi.org/10.1007/s12562-020-01477-3

Turvey, S. T., O. R. Green, R. N. Holdaway. 2005. Cortical growth marks reveal extended juvenile development in New Zealand moa. Nature, 435 (7044): 940–943. https://doi.org/10.1038/nature03635

Udovichenko, N. I. 2009. Ichthyofauna and age of the Paleogene sands of Osinove area, Lugansk region. In: Fossil fauna and flora of Ukraine: paleoecological and stratigraphic aspects. Collection of Scientific Works of the Institute of Geological Sciences of the National Academy of Sciences of Ukraine. Institute of Geological Sciences of the National Academy of Sciences of Ukraine, Kyiv, 255–261. [In Russian]

Van Soest, R. W. M., W. L. van Utrecht. 1971. The layered structure of bones of birds as a possible indication of age. Bijdragen tot de Dierkunde, 41 (1): 61–66. https://doi.org/10.1163/26660644-04101008

Wang, M., Zh. Li, Zh. Zhou. 2017. Insight into the growth pattern and bone fusion of basal birds from an Early Cretaceous enantiornithine bird. Proceedings of the National Academy of Sciences, 114 (43): 11470–11475. https://doi.org/10.1073/pnas.1707237114

Werning, S. A. 2013. Evolution of bone histological characters in amniotes, and the implications for the evolution of growth and metabolism. Ph.D. thesis, University of California, Berkeley, 1–445.

Westeberg, H. 1990. A proposal regarding the source of nutrition of leptocephalus larvae. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 75 (6): 863–864. https://doi.org/10.1002/iroh.19900750632

Whitehead, C. C. 2004. Overview of bone biology in the egg-laying hen. Poultry Science, 83: 193–199. https://doi.org/10.1093/ps/83.2.193

Wilson, L. E., K. Chin. 2014. Comparative osteohistology of Hesperornis with reference to pygoscelid penguins: the effects of climate and behaviour on avian bone microstructure. Royal Society Open Science, 1: 140245. https://doi.org/10.1098/rsos.140245

Wilson, S., B. H. Thorp. 1998. Estrogen and cancellous bone loss in the fowl. Calcified Tissue International, 62 (6): 506–511. https://doi.org/10.1007/s002239900470

Woodward, H. N., K. Padian, A. H. Lee. 2013. Skeletochronology. In: Padian, K., E.-T. Lamm (Eds). Bone Histology of Fossil Tetrapods. University of California Press, Berkeley, 195–215. https://doi.org/10.1525/california/9780520273528.003.0007

Yamada, M., C. Chen, T. Sugiyama, W. K. Kim. 2021. Effect of age on bone structure parameters in laying hens. Animals, 11 (2): 570. https://doi.org/10.3390/ani11020570

Yan, J., Z. Zhang. 2020. Post‐hatching growth of the limbs in an altricial bird species. Veterinary Medicine and Science, 7 (1): 210–218. https://doi.org/10.1002/vms3.357

Zelenkov, N. V., E. N. Kurochkin. 2015. Класс Aves [Class Aves]. In: Kurochkin E. N., A. V. Lopatin, N. V. Zelenkov (Eds). Fossil vertebrates of Russia and adjacent countries. Fossil reptiles and birds. Part 3. GEOS, Moscow, 86–290. [In Russian]

Zhao, S. C., X. Q. Teng, D. L. Xu, X. Chi, M. Ge, S. W. Xu. 2020. Influences of low level of dietary calcium on bone characters in laying hens. Poultry Science, 99: 7084–7091. https://doi.org/10.1016/j.psj.2020.08.057

Zvonok, E., M. Udovichenko, A. Bratishko. 2012. Location of Eocene vertebrates Ikove (Luhansk region, Ukraine): ecological and taphonomic analysis. Paleontological review, 44: 107–122. [In Ukrainian]