A species distribution modelling analysis of Rafflesia
pricei Meijer (Rafflesiaceae), a parasitic flowering plant endemic to
Borneo
Volodymyr Tytar1 https://orcid.org/0000-0002-0864-2548
Iryna Kozynenko1 https://orcid.org/0009-0003-9437-3309
Michael Navakatikyan2 https://orcid.org/0000-0002-1107-1694
1I. Schmalhausen Institute of Zoology, NAS of Ukraine (Kyiv,
Ukraine);
2University of New South Wales (Sydney, New South Wales,
Australia)
Cite as
Tytar, V., I. Kozynenko, M. Navakatikyan.
2025. A species distribution modelling analysis of Rafflesia pricei Meijer
(Rafflesiaceae), a parasitic flowering plant endemic to Borneo. GEO&BIO, 27: xx–xx. [In English, with
Ukrainian summary]
doi: https://doi.org/10.53452/gb2717
pdf: gb2717_215-233-tyt-fin.pdf
Abstract
Rafflesia
pricei (Rafflesiaceae), an
endangered holoparasitic plant with large, elusive flowers, faces conservation
challenges in Sabah, Malaysia, due to its cryptic life cycle and habitat
vulnerability. This study used species distribution models (SDMs) to analyse
environmental factors shaping its distribution, aiming to identify areas
suitable for new populations and inform conservation efforts. Creating SDMs for
a poorly known species as R. pricei can be a difficult task because
occurrence data is limited, therefore the method ‘ensemble of small models’ was
used, implementing three standard algorithms: generalised linear models,
generalised boosted regression models, and support vector machines. Analysing
elevation, bioclimatic variables, edaphic characteristics, and cloud cover data
revealed a complex interplay of drivers. Initial assessments highlighted
elevation, consistent with known sub-montane occurrences. However, a refined
model identified the mean daily mean air temperature of the coldest quarter as
the most significant predictor, suggesting a critical role for subtle
temperature variations in flowering, host physiology, and pollination.
Moisture-related bioclimatic factors also had considerable influence, while
edaphic characteristics were less prominent. The study highlights the
fragmented and undersized nature of habitats suitablefor R. pricei in Sabah. This
fragmentation, combined with sensitivity to environmental changes and threats
from deforestation and agriculture, necessitates targeted conservation.
Identifying key environmental drivers provides a scientific basis for selecting
and managing potential reserves to safeguard R. pricei and its host. The
study advocates for consolidating larger, interconnected habitat patches,
particularly within the Heart of Borneo initiative, to maximise long-term
survival and ecosystem preservation. By revealing R. pricei’s
environmental dependencies, this research is anticipated to enhance the
monitoring and conservation management of the species. Further research into
eco-physiological responses to key factors, including El Niño impacts, is
recommended.
Key words:
Rafflesia
pricei, Sabah, species distribution modelling, conservation
priorities
Correspondence to
Volodymyr Tytar; I. Schmalhausen
Institute of Zoology, NAS of Ukraine, 15 Bohdan Khmelnytsky Street, Kyiv, 01054
Ukraine; Email: vtytar@gmail.com
Article info
Submitted: 09.04.2025. Revised:
29.05.2025. Accepted: 30.06.2025
References
Abdulwahab,
U. A., E. Hammill, C. P. Hawkins. 2022. Choice of climate data affects the
performance and interpretation of species distribution models. Ecological
Modelling, 471: art. 110042. https://doi.org/10.1016/j.ecolmodel.2022.110042
Bagwan, W. A., R. S. Gavali, A. Maity.
2023. Quantifying soil organic carbon (SOC) density and stock in the Urmodi
River watershed of Maharashtra, India: implications for sustainable land
management. Journal of Umm Al-Qura University for Applied Sciences, 9
(4): 548–564. https://doi.org/10.1007/s43994-023-00064-3
Beaman, R. S., P. J. Decker, J. H.
Beaman. 1988. Pollination of Rafflesia
(Rafflesiaceae). American Journal of Botany, 75 (8): 1148–1162. https://doi.org/10.1002/j.1537-2197.1988.tb08828.x
Bendiksby
M., T. Schumacher, G. Gussarova, J. Nais, K. Mat-Salleh, [et al.]. 2010.
Elucidating the evolutionary history of the Southeast Asian, holoparasitic,
giant-flowered Rafflesiaceae: pliocene vicariance, morphological convergence
and character displacement. Molecular Phylogenetics and Evolution, 57
(2): 620–33. https://doi.org/10.1016/j.ympev.2010.08.005
Bourhis, Y., J. R. Bell, C. R. Shortall,
W. E. Kunin, A. E. Milne. 2023. Explainable neural networks for trait-based
multispecies distribution modelling—A case study with butterflies and moths. Methods
in Ecology and Evolution, 14 (2): 1531–1542. https://doi.org/10.1111/2041-210X.14097
Boyce, M. S., P. R., Vernier, S. E.
Nielsen, F. K. A. Schmiegelow. 2002. Evaluating resource selection functions. Ecological
Modelling, 157 (2–3):
281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
Breiner, F. T., A. Guisan, A. Bergamini,
M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using
ensembles of small models. Methods in Ecology and Evolution, 6(10):
1210–1218. https://doi.org/10.1111/2041-210X.12403
Brun, P., W. Y. Thuiller, L. Chauvier, L.
Pellissier, R.O. Wüest, [et al]. 2020. Model complexity affects species
distribution projections under climate change. Journal of Biogeography, 47 (1): 130–142. https://doi.org/10.1111/jbi.13734
Brun, P., N. E. Zimmermann, C. Hari, L.
Pellissier, D. N. Karger. 2022. CHELSA-BIOCLIM+ A novel set of global
climate-related predictors at kilometre-resolution. Earth System Science
Data, 14 (12): 5573–5603. https://doi.org/10.5194/essd-14-5573-2022
Chefaoui, R. M., J. M. Lobo. 2008.
Assessing the effects of pseudo-absences on predictive distribution model
performance. Ecological Modelling, 210 (4): 478–486.
https://doi.org/10.1016/j.ecolmodel.2007.08.010
Chung, A. Y. C., S. K. F. Chew, R.
Majapun, R. Nilus, F. Kugan. 2012. Rafflesia Forest Reserve: Conserving not
only Rafflesia but also endemic, rare & interesting insects. Paper
presented at the Malaysia International Biological Symposium, Selangor, 1–3. https://www.researchgate.net/publication/329152466
Conrad, O., B. Bechtel, M. Bock, H.
Dietrich, E. Fischer. 2015. System for Automated Geoscientific Analyses (SAGA)
v. 2.1.4. Geoscientific Model Development, 8 (7): 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015
De Marco, P. Jun., C. C. Nóbrega. 2018.
Evaluating collinearity effects on species distribution models: An approach
based on virtual species simulation. PLoS ONE, 13 (9): e0202403. https://doi.org/10.1371/journal.pone.0202403
Elith, J.,
Leathwick, J. R. 2009. Species distribution models: Ecological explanation and
prediction across space and time. Annual
Review of Ecology, Evolution, and Systematics, 40 (1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Farr, T. G., P.A. Rosen, E. Caro, R.
Crippen, R. Duren, [et al]. 2007. The shuttle radar topography mission. Reviews
of Geophysics, 45 (2): RG2004.
https://doi.org/10.1029/2005RG000183
Fois,
M., A. Cuena-Lombraña, G. Fenu, G. Bacchetta. 2018. Using species distribution
models at local scale to guide the search of poorly known species: Review,
methodological issues and future directions. Ecological Modelling,
385: 124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018
Frazier,
A. E., L. Song. 2025. Artificial intelligence in landscape ecology: Recent
advances, perspectives, and opportunities. Current Landscape Ecology Reports,
10 (1): 1–13.
https://doi.org/10.1007/s40823-024-00103-7
GBIF. 2024. GBIF Occurrence. Download (14 November 2024).
https://doi.org/10.15468/dl.z8m4y4
Gerstner B. E., M. E. Blair, P. Bills,
C.A. Cruz-Rodriguez, P. L. Zarnetske. 2024. The influence of scale-dependent
geodiversity on species distribution models in a biodiversity hotspot. Philosophical
Transactions: Mathematical, Physical and Engineering Sciences, 382 (2269):
20230057. https://doi.org/10.1098/rsta.2023.0057
Gonzalez, A.
M., M. F. Romero, H. A. Sato. 2024. Exploring hidden connections: endophytic
system and flower mristem development of Pilostyles
berteroi(Apodanthaceae) and interaction with its host Adesmia trijuga (Fabaceae). Plants,
13 (21): 3010. https://doi.org/10.3390/plants13213010
Guisan,
A., N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological
Modelling, 135 (2–3): 147–186.
http://dx.doi.org/10.1016/S0304-3800(00)00354-9
Guisan,
A., W. Thuiller. 2005. Predicting species distribution: offering more than
simple habitat models. Ecology Letters, 8 (9): 993–1009.
http://dx.doi.org/10.1111/j.1461-0248.2007.01044.x
Hadley, K. S. 1994. The role of
disturbance, topography, and forest structure in the development of a montane
forest landscape. Bulletin of the Torrey Botanical Club, 121 (1):
47–61. https://doi.org/10.2307/2996883
Hammer, Ø., D. A. T. Harper, P. D. Ryan.
2001. Past: Paleontological Statistics Software Package for Education and Data
Analysis. Palaeontologia Electronica, 4 (1): art. 4, 1–9.
http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hao, T., J. Elith, G. Guillera-Arroita, J. J.
Lahoz-Monfort. 2019. A review of evidence about use and performance of species
distribution modelling ensembles like BIOMOD. Diversity & Distributions,
25 (5): 839–852. https://doi.org/10.1111/ddi.12892
Hidayati, S. N., J. L. Walck. 2016. A review of the
biology of Rafflesia: what do we know and what’s next? Botanic Gardens
Bulletin, 19 (2): 67–78. https://doi.org/10.14203/bkr.v19i2.166
Hijmans, R. J., M. Barbosa, A. Ghosh, A.
Mandel. 2023. Geodata: download
geographic data. https://doi.org/10.32614/CRAN.package.geodata
Hirzel,
A. H., G. Le Lay, V. Helfer, C. Randin, A. Guisan. 2006. Evaluating the ability
of habitat suitability models to predict species presences. Ecological Modelling, 199 (2): 142–152.
https://doi.org/10.1016/j.ecolmodel.2006.05.017
Hogg,
E. H. 1997. Temporal scaling of moisture and the forest-grassland boundary in
western Canada. Agricultural and Forest Meteorology, 84 (1-2): 115–122.
https://doi.org/10.1016/S0168-1923(96)02380-5
Karger,
D. N., D. R. Schmatz, G. Dettling, N. E. Zimmermann. 2020. High-resolution
monthly precipitation and temperature time series from 2006 to 2100. Scientific
Data, 7 (1): 248.
https://doi.org/10.1038/s41597-020-00587-y
Kedri,
F. K., Z. Hamzah, N. S. Sukri, S. H. Yaacob, N. A. Majid, [et al]. 2018.
Distribution and ecology of Rafflesia in Royal belum state park, Perak,
Malaysia. International Journal of Engineering & Technology, 7 (2.29): 292–296.
https://doi.org/10.14419/ijet.v7i2.29.13335
Kemarau,
R. A., O. V. Eboy. 2021. The impact of El Niño–Southern Oscillation (ENSO) on
temperature: a case study in Kuching, Sarawak. Malaysian Journal of Social
Sciences and Humanities, 6 (1):
289–297. https://doi.org/10.47405/mjssh.v6i1.602
Kuijt, J. 1969. The Biology of Parasitic
Flowering Plants. University of California Press, Berkeley, 1–246. https://doi.org/10.1525/9780520417793
Lal, R. 2020. Soil organic matter and
water retention. Agronomy Journal, 112 (5): 3265–3277.
https://doi.org/10.1002/agj2.20282
Lestari, D., R. Mahyuni, R. Iryadi. 2020.
Rafflesia pricei Meijer
(Rafflesiaceae): A new locality in Borneo. Berita Biologi, 19 (2):
177–184.
https://doi.org/10.14203/beritabiologi.v19i2.3856
Lianah, L., K. Krisantini, P. Sopade.
2015. Status of traditional herb Tetrastigma
glabratum (Blume) Planch in Mt
Prau, Central Java, Indonesia. Journal of Pharmacognosy and Phytochemistry,
4 (4): 179–184.
https://www.phytojournal.com/archives/2015/vol4issue4/PartC/4-3-38.pdf
Lin
K, Y. Gao. 2022. Model interpretability of financial fraud detection by group
SHAP. Expert Systems with Applications, 210: 118354. https://doi.org/10.1016/j.eswa.2022.118354
Lomba, A., L. Pellissier, C. Randin, J.
Vicente, F. Moreira, [et al.]. 2010. Overcoming the rare species modelling
paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological
conservation, 143 (11): 2647–2657.
https://doi.org/10.1016/j.biocon.2010.07.007
Lundberg, S. M., S. I. Lee. 2017. A
unified approach to interpreting model predictions. Neural Information
Processing Systems, 30:
4768–4777.
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
Lundberg, S. M., B. Nair, M.S. Vavilala,
M. Horibe, M.J. Eisses, [et al.]. 2018. Explainable machine-learning
predictions for the prevention of hypoxaemia during surgery. Nature
Biomedical Engineering, 2 (10):
749e760. https://doi.org/10.1038/s41551-018-0304-0
Magnago,
L. F. S., M. F. Rocha, L. Meyer, S.V. Martins, J. A. A. Meira-Neto. 2015.
Microclimatic conditions at forest edges have significant impacts on vegetation
structure in large Atlantic forest fragments. Biodiversity &
Conservation, 24: 2305–2318.
https://doi.org/10.1007/s10531-015-0961-1
Malabrigo
Jr, P., A. B. Tobias, J. Witono, S. Mursidawati, A. Susatya, [et al]. 2023.
Most of the world's largest flowers (genus Rafflesia) are now on the
brink of extinction. Plants, People, Planet, 7 (2): 331–346.
https://doi.org/10.1002/ppp3.10431
Meijer,
W. 1984. New species of Rafflesia (Rafflesiaceae). Blumea, 30 (1):
209–215. https://repository.naturalis.nl/pub/524883
Nainar,
A., M. Mahali, K. U. Kamlun, N. A. Besar, L. Majuakim, [et al.]. 2022. Higher
water yield but no evidence of higher flashiness in tropical montane cloud
forest (TMCF) headwater streams. Hydrology, 9 (10): 162. https://doi.org/10.3390/hydrology9100162
Nais, J., 2001. Rafflesia of The World. Sabah Parks in association
with Natural History Publications. Kota Kinabalu. 1–243.
Nickrent, D. L. 2020. Parasitic
angiosperms: How often and how many? Taxon, 69 (1): 5–27.
https://doi.org/10.1002/tax.121953
Niemann, U., B. Boecking, P. Brueggemann,
W. Mebus, B. Mazurek, [et al.]. 2020. Tinnitus-related distress after
multimodal treatment can be characterized using a key subset of baseline
variables. PLoS ONE, 15 (1): e0228037.
https://doi.org/10.1371/journal.pone.0228037
Nikolov, L. A., P. B. Tomlinson, M.
Sugumaran, P. K. Endress, E. M. Kramer, [et al.]. 2014. Holoparasitic
Rafflesiaceae possess the most reduced endophytes and yet give rise to the
world's largest flowers. Annals of Botany, 114 (2): 233–242. https://doi.org/10.1093/aob/mcu114
Nikolov, L. A., C. C. Davis. 2017. The
big, the bad, and the beautiful: Biology of the world's largest flowers. Journal
of Systematics and Evolution, 55 (6): 516–524. https://doi.org/10.1111/jse.12260
Pan,
Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, [et al.]. 2011. A large
and persistent carbon sink in the World’s forests. Science, 333 (6045): 988–994.
http://dx.doi.org/10.1126/science.1201609
Pacayán, S., F. D. Alfaro, W.
Pérez-Martínez, I. Briceño-de-Urbaneja. 2019. Potential distribution model of Leontochir
ovallei using remote sensing data. Revista de Teledetección, 54:
59–69.
https://doi.org/10.4995/raet.2019.12792
Patiño, S., T. Aalto, A.A. Edwards, J.
Grace. 2002. Is Rafflesia an
endothermic flower? New Phytologist, 154 (2): 429–437.
https://doi.org/10.1046/j.1469-8137.2002.00396.x
Payne,
J. 1988, Orang-utan Conservation in Sabah, WWF Malaysia. Project No. 96/86 and
WWF International Project No. 3759. WWF Malaysia, Kuala Lumpur, 137 pp.
http://myagric.upm.edu.my/id/eprint/8716
Perbet,
P., M. Fortin, A.Ville, M. Béland. 2019. Near real-time deforestation detection
in Malaysia and Indonesia using change vector analysis with three sensors. International
Journal of Remote Sensing, 40 (19): 7439–7458.
https://doi.org/10.1080/01431161.2019.1579390
Peterson, A. T., J. Soberón. 2012.
Species distribution modeling and ecological niche modeling: Getting the
concepts right. Natureza & Conservação, 10 (2): 102–107. https://doi.org/10.4322/natcon.2012.019
Poggio, L., L. M. de Sousa, N. H. Batjes,
G. B. M. Heuvelink, B. Kempen, [et al.]. 2021. SoilGrids 2.0: producing soil
information for the globe with quantified spatial uncertainty. SOIL, 7
(1): 217–240, https://doi.org/10.5194/soil-7-217-2021
Qie,
L., S. L. Lewis, M. J. P. Sullivan, G. Lopez-Gonzalez, G. C. Pickavance, [et
al.]. 2017. Long-term carbon sink in Borneo’s forests halted by drought and
vulnerable to edge effects. Nature Communicaions, 8: 1966.
https://doi.org/10.1038/s41467-017-01997-0
Radomski, T., D. Beamer, A. Babineau, C.
Wilson, J. Pechmann, [et al.]. 2022. Finding what you don’t know: testing SDM
methods for poorly known species. Diversity & Distributions, 28 (9):
1769–1779. https://doi.org/10.1111/ddi.13536
Rafiqpoor, M. D., J. Nieder. 2006.
Altitudinal zonation of climate and vegetation in a global megadiversity
centre, Mount Kinabalu (North Borneo). ERDKUNDE, 60 (4): 362–374.
https://doi.org/10.3112/erdkunde.2006.04.06
Ramírez, P. B., S. Machado, S. Singh, R.
Plunkett, F. J. Calderón. 2023. Addressing the effects of soil organic carbon
on water retention in US Pacific Northwest wheat–soil systems. Frontiers in
Soil Science, 3: 1233886. https://doi.org/10.3389/fsoil.2023.1233886
Rathore, M. K., L. K. Sharma. 2023.
Efficacy of species distribution models (SDMs) for ecological realms to
ascertain biological conservation and practices. Biodiversity &
Conservation, 32 (10): 1–35. http://dx.doi.org/10.1007/s10531-023-02648-1
Renjana,
E., I. P. Astuti, E. Munawaroh, S. Mursidawati, J. R. Witono, [et al.]. 2022.
Assessing potential habitat suitability of parasitic plant: A case study of Rafflesia arnoldii and its host
plants. Global Ecology & Conservation, 34: p.e02063.
http://doi.org/10.1016/j.gecco.2022.e02063
Sabah...
2012. Sabah State Government, 2012. Sabah Biodiversity Strategy 2012–2022.
Available at:
http://ww2.sabah.gov.my/phb/wp-content/uploads/Sabah-Biodiversity-Conservation-Strategy-ilovepdf-compressed1.pdf
Shaw, J. 2017. Colossal Blossom. Pursuing
the peculiar genetics of a parasitic plant. Harvard Magazine,
March-April 2017; (online publication
https://www.harvardmagazine.com/2017/02/colossal-blossom).
Siahaan, F.A., R. Iryadi, D. Lestari.
2024. Edaphic characteristics of Rafflesia
habitats in Indonesia: Implications for conservation and propagation. Journal
of Tropical Biodiversity & Biotechnology, 9 (3): 1–11.
https://doi.org/10.1007/s10531-023-02648-1
Singh, A., P. Santra, M. Kumar, N. Panwar,
P. R. Meghwal. 2016. Spatial assessment of soil organic carbon and
physicochemical properties in a horticultural orchard at arid zone of India
using geostatistical approaches. Environmental Monitoring & Assessment,
188 (9): 529. https://doi.org/10.1007/s10661-016-5522-x
Sloan, S., M. J. Campbell, M. Alamgir, A.
M. Lechner, J. Engert, [et al.]. 2019. Trans-national conservation and
infrastructure development in the Heart of Borneo. PLoS One, 14 (9):
e0221947. https://doi.org/10.1371/journal.pone.0221947
Somers, R. H. 1962. A new asymmetric
measure of association for ordinal variables. American Sociological Review, 27
(6): 799–811. https://doi.org/10.2307/2090408
Song, L., L. Estes. 2023. itsdm:
Isolation forest-based presence-only species distribution modelling and
explanation in r. Methods in Ecology & Evolution, 14 (3): 831–840.
https://doi.org/10.1111/2041-210X.14067
Stevens,
J. 1992. Applied Multivariate Statistics
for the Social Sciences (4th ed.). Lawrence Erlbaum Associates, Inc.,
1–720. https://doi.org/10.4324/9781410604491
Thirumalai,
K., P. N. DiNezio, Y. Okumura, C. Deser. 2017. Extreme temperatures in
Southeast Asia caused by El Niño and worsened by global warming. Nature Communicaions,
8: 15531.
https://doi.org/10.1038/ncomms15531
Tsegmed,
Z., S. Baasanmunkh, K. Oyundelger, B. Oyuntsetseg, U. Bayarsaikhan, [et al].
2023. Predicting the current and future suitable habitats, species
distribution, and conservation assessment of Fritillaria dagana (Liliaceae). Journal of Asia-Pacific
Biodiversity, 16 (3): 384–390.
https://doi.org/10.1016/j.japb.2023.01.004
Velazco, S. J. E., F. Villalobos, F.
Galvão, P. A. De Marco (Jr.). 2019. A dark scenario for Cerrado plant species:
Effects of future climate, land use and protected areas ineffectiveness. Diversity
& Distributions, 25 (4): 660–673.
https://doi.org/10.1111/ddi.12886
Velazco, S. J. E., M. B. Rose, A. F. A.
Andrade, I. Minoli, J. Franklin. 2022. flexsdm: An R package for supporting a
comprehensive and flexible species distribution modelling workflow. Methods
in Ecology & Evolution, 13 (8): 1661–1669.
https://doi.org/10.1111/2041-210X.13874
Wadoux, A., P. A. Saby, M. P. Martin.
2023. Shapley values reveal the drivers of soil organic carbon stock
prediction. SOIL, 9 (1): 21–38. https://doi.org/10.5194/soil-9-21-2023
Wahab, R., G. Gunsalam, F. Karolus, D.
Dasini, M. Fadil, [et al.]. 2021. Floristic community composition in Rafflesia’s
habitat at Kinabalu Park, Sabah. Borneo Science. The Journal of Science and
Technology, 42 (2): 1–19. https://doi.org/10.51200/bsj.v42i2.4468
Wahab, R., A. A. Mus, K. Saibeh, S.
Khamis, H. Mujih, [et al.]. 2021a. Soil physico-chemistry in the habitat of Rafflesia
in Kinabalu Park, Sabah, Malaysia. Journal of Tropical Biology &
Conservation (JTBC), 18: 149–165. https://doi.org/10.51200/jtbc.v18i.3450
Wang,
S., H. Ruan, Y. Han. 2010. Effects of microclimate, litter type, and mesh size
on leaf litter decomposition along an elevation gradient in the Wuyi Mountains,
China. Ecological Research, 25
(6): 1113–1120. https://doi.org/10.1007/s11284-010-0736-9
Westwood, J. H., J. I. Yoder, M. P.
Timko, C. W. DePamphilis. 2010. The evolution of parasitism in plants. Trends
in Plant Science, 15(4): 227 – 235.
https://doi.org/10.1016/j.tplants.2010.01.004
Wilson, A. M., W. Jetz. 2016. Remotely
sensed high resolution global cloud dynamics for predicting ecosystem and
biodiversity distributions. PloS Biology, 14(3): e1002415. https://doi.org/10.1371/journal.pbio.1002415
|