A species distribution modelling analysis of Rafflesia pricei Meijer (Rafflesiaceae), a parasitic flowering plant endemic to Borneo

Volodymyr Tytar1 https://orcid.org/0000-0002-0864-2548

Iryna Kozynenko1 https://orcid.org/0009-0003-9437-3309

Michael Navakatikyan2 https://orcid.org/0000-0002-1107-1694

1I. Schmalhausen Institute of Zoology, NAS of Ukraine (Kyiv, Ukraine);

2University of New South Wales (Sydney, New South Wales, Australia)

Cite as

Tytar, V., I. Kozynenko, M. Navakatikyan. 2025. A species distribution modelling analysis of Rafflesia pricei Meijer (Rafflesiaceae), a parasitic flowering plant endemic to Borneo. GEO&BIO, 27: xx–xx. [In English, with Ukrainian summary]

doi: https://doi.org/10.53452/gb2717

pdf: gb2717_215-233-tyt-fin.pdf

Abstract

Rafflesia pricei (Rafflesiaceae), an endangered holoparasitic plant with large, elusive flowers, faces conservation challenges in Sabah, Malaysia, due to its cryptic life cycle and habitat vulnerability. This study used species distribution models (SDMs) to analyse environmental factors shaping its distribution, aiming to identify areas suitable for new populations and inform conservation efforts. Creating SDMs for a poorly known species as R. pricei can be a difficult task because occurrence data is limited, therefore the method ‘ensemble of small models’ was used, implementing three standard algorithms: generalised linear models, generalised boosted regression models, and support vector machines. Analysing elevation, bioclimatic variables, edaphic characteristics, and cloud cover data revealed a complex interplay of drivers. Initial assessments highlighted elevation, consistent with known sub-montane occurrences. However, a refined model identified the mean daily mean air temperature of the coldest quarter as the most significant predictor, suggesting a critical role for subtle temperature variations in flowering, host physiology, and pollination. Moisture-related bioclimatic factors also had considerable influence, while edaphic characteristics were less prominent. The study highlights the fragmented and undersized nature of habitats suitablefor R. pricei in Sabah. This fragmentation, combined with sensitivity to environmental changes and threats from deforestation and agriculture, necessitates targeted conservation. Identifying key environmental drivers provides a scientific basis for selecting and managing potential reserves to safeguard R. pricei and its host. The study advocates for consolidating larger, interconnected habitat patches, particularly within the Heart of Borneo initiative, to maximise long-term survival and ecosystem preservation. By revealing R. pricei’s environmental dependencies, this research is anticipated to enhance the monitoring and conservation management of the species. Further research into eco-physiological responses to key factors, including El Niño impacts, is recommended.

Key words:

Rafflesia pricei, Sabah, species distribution modelling, conservation priorities

Correspondence to

Volodymyr Tytar; I. Schmalhausen Institute of Zoology, NAS of Ukraine, 15 Bohdan Khmelnytsky Street, Kyiv, 01054 Ukraine; Email: vtytar@gmail.com

Article info

Submitted: 09.04.2025. Revised: 29.05.2025. Accepted: 30.06.2025

References

Abdulwahab, U. A., E. Hammill, C. P. Hawkins. 2022. Choice of climate data affects the performance and interpretation of species distribution models. Ecological Modelling, 471: art. 110042. https://doi.org/10.1016/j.ecolmodel.2022.110042

Bagwan, W. A., R. S. Gavali, A. Maity. 2023. Quantifying soil organic carbon (SOC) density and stock in the Urmodi River watershed of Maharashtra, India: implications for sustainable land management. Journal of Umm Al-Qura University for Applied Sciences, 9 (4): 548–564. https://doi.org/10.1007/s43994-023-00064-3

Beaman, R. S., P. J. Decker, J. H. Beaman. 1988. Pollination of Rafflesia (Rafflesiaceae). American Journal of Botany, 75 (8): 1148–1162. https://doi.org/10.1002/j.1537-2197.1988.tb08828.x

Bendiksby M., T. Schumacher, G. Gussarova, J. Nais, K. Mat-Salleh, [et al.]. 2010. Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: pliocene vicariance, morphological convergence and character displacement. Molecular Phylogenetics and Evolution, 57 (2): 620–33. https://doi.org/10.1016/j.ympev.2010.08.005

Bourhis, Y., J. R. Bell, C. R. Shortall, W. E. Kunin, A. E. Milne. 2023. Explainable neural networks for trait-based multispecies distribution modelling—A case study with butterflies and moths. Methods in Ecology and Evolution, 14 (2): 1531–1542. https://doi.org/10.1111/2041-210X.14097

Boyce, M. S., P. R., Vernier, S. E. Nielsen, F. K. A. Schmiegelow. 2002. Evaluating resource selection functions. Ecological Modelling, 157 (2–3): 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4

Breiner, F. T., A. Guisan, A. Bergamini, M.P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution, 6(10): 1210–1218. https://doi.org/10.1111/2041-210X.12403

Brun, P., W. Y. Thuiller, L. Chauvier, L. Pellissier, R.O. Wüest, [et al]. 2020. Model complexity affects species distribution projections under climate change. Journal of Biogeography, 47 (1): 130–142. https://doi.org/10.1111/jbi.13734

Brun, P., N. E. Zimmermann, C. Hari, L. Pellissier, D. N. Karger. 2022. CHELSA-BIOCLIM+ A novel set of global climate-related predictors at kilometre-resolution. Earth System Science Data, 14 (12): 5573–5603. https://doi.org/10.5194/essd-14-5573-2022

Chefaoui, R. M., J. M. Lobo. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210 (4): 478–486. https://doi.org/10.1016/j.ecolmodel.2007.08.010

Chung, A. Y. C., S. K. F. Chew, R. Majapun, R. Nilus, F. Kugan. 2012. Rafflesia Forest Reserve: Conserving not only Rafflesia but also endemic, rare & interesting insects. Paper presented at the Malaysia International Biological Symposium, Selangor, 1–3. https://www.researchgate.net/publication/329152466

Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8 (7): 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

De Marco, P. Jun., C. C. Nóbrega. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE, 13 (9): e0202403. https://doi.org/10.1371/journal.pone.0202403

Elith, J., Leathwick, J. R. 2009. Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40 (1): 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Farr, T. G., P.A. Rosen, E. Caro, R. Crippen, R. Duren, [et al]. 2007. The shuttle radar topography mission. Reviews of Geophysics, 45 (2): RG2004. https://doi.org/10.1029/2005RG000183

Fois, M., A. Cuena-Lombraña, G. Fenu, G. Bacchetta. 2018. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modelling, 385: 124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018

Frazier, A. E., L. Song. 2025. Artificial intelligence in landscape ecology: Recent advances, perspectives, and opportunities. Current Landscape Ecology Reports, 10 (1): 1–13. https://doi.org/10.1007/s40823-024-00103-7

GBIF. 2024. GBIF Occurrence. Download (14 November 2024). https://doi.org/10.15468/dl.z8m4y4

Gerstner B. E., M. E. Blair, P. Bills, C.A. Cruz-Rodriguez, P. L. Zarnetske. 2024. The influence of scale-dependent geodiversity on species distribution models in a biodiversity hotspot. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 382 (2269): 20230057. https://doi.org/10.1098/rsta.2023.0057

Gonzalez, A. M., M. F. Romero, H. A. Sato. 2024. Exploring hidden connections: endophytic system and flower mristem development of Pilostyles berteroi(Apodanthaceae) and interaction with its host Adesmia trijuga (Fabaceae). Plants, 13 (21): 3010. https://doi.org/10.3390/plants13213010

Guisan, A., N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135 (2–3): 147–186. http://dx.doi.org/10.1016/S0304-3800(00)00354-9

Guisan, A., W. Thuiller. 2005. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8 (9): 993–1009. http://dx.doi.org/10.1111/j.1461-0248.2007.01044.x

Hadley, K. S. 1994. The role of disturbance, topography, and forest structure in the development of a montane forest landscape. Bulletin of the Torrey Botanical Club, 121 (1): 47–61. https://doi.org/10.2307/2996883

Hammer, Ø., D. A. T. Harper, P. D. Ryan. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1): art. 4, 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hao, T., J. Elith, G. Guillera-Arroita, J. J. Lahoz-Monfort. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity & Distributions, 25 (5): 839–852. https://doi.org/10.1111/ddi.12892

Hidayati, S. N., J. L. Walck. 2016. A review of the biology of Rafflesia: what do we know and what’s next? Botanic Gardens Bulletin, 19 (2): 67–78. https://doi.org/10.14203/bkr.v19i2.166

Hijmans, R. J., M. Barbosa, A. Ghosh, A. Mandel. 2023. Geodata: download geographic data. https://doi.org/10.32614/CRAN.package.geodata

Hirzel, A. H., G. Le Lay, V. Helfer, C. Randin, A. Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199 (2): 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017

Hogg, E. H. 1997. Temporal scaling of moisture and the forest-grassland boundary in western Canada. Agricultural and Forest Meteorology, 84 (1-2): 115–122. https://doi.org/10.1016/S0168-1923(96)02380-5

Karger, D. N., D. R. Schmatz, G. Dettling, N. E. Zimmermann. 2020. High-resolution monthly precipitation and temperature time series from 2006 to 2100. Scientific Data, 7 (1): 248. https://doi.org/10.1038/s41597-020-00587-y

Kedri, F. K., Z. Hamzah, N. S. Sukri, S. H. Yaacob, N. A. Majid, [et al]. 2018. Distribution and ecology of Rafflesia in Royal belum state park, Perak, Malaysia. International Journal of Engineering & Technology, 7 (2.29): 292–296. https://doi.org/10.14419/ijet.v7i2.29.13335

Kemarau, R. A., O. V. Eboy. 2021. The impact of El Niño–Southern Oscillation (ENSO) on temperature: a case study in Kuching, Sarawak. Malaysian Journal of Social Sciences and Humanities, 6 (1): 289–297. https://doi.org/10.47405/mjssh.v6i1.602

Kuijt, J. 1969. The Biology of Parasitic Flowering Plants. University of California Press, Berkeley, 1–246. https://doi.org/10.1525/9780520417793

Lal, R. 2020. Soil organic matter and water retention. Agronomy Journal, 112 (5): 3265–3277. https://doi.org/10.1002/agj2.20282

Lestari, D., R. Mahyuni, R. Iryadi. 2020. Rafflesia pricei Meijer (Rafflesiaceae): A new locality in Borneo. Berita Biologi, 19 (2): 177–184. https://doi.org/10.14203/beritabiologi.v19i2.3856

Lianah, L., K. Krisantini, P. Sopade. 2015. Status of traditional herb Tetrastigma glabratum (Blume) Planch in Mt Prau, Central Java, Indonesia. Journal of Pharmacognosy and Phytochemistry, 4 (4): 179–184. https://www.phytojournal.com/archives/2015/vol4issue4/PartC/4-3-38.pdf

Lin K, Y. Gao. 2022. Model interpretability of financial fraud detection by group SHAP. Expert Systems with Applications, 210: 118354. https://doi.org/10.1016/j.eswa.2022.118354

Lomba, A., L. Pellissier, C. Randin, J. Vicente, F. Moreira, [et al.]. 2010. Overcoming the rare species modelling paradox: A novel hierarchical framework applied to an Iberian endemic plant. Biological conservation, 143 (11): 2647–2657. https://doi.org/10.1016/j.biocon.2010.07.007

Lundberg, S. M., S. I. Lee. 2017. A unified approach to interpreting model predictions. Neural Information Processing Systems, 30: 4768–4777. https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

Lundberg, S. M., B. Nair, M.S. Vavilala, M. Horibe, M.J. Eisses, [et al.]. 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2 (10): 749e760. https://doi.org/10.1038/s41551-018-0304-0

Magnago, L. F. S., M. F. Rocha, L. Meyer, S.V. Martins, J. A. A. Meira-Neto. 2015. Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodiversity & Conservation, 24: 2305–2318. https://doi.org/10.1007/s10531-015-0961-1

Malabrigo Jr, P., A. B. Tobias, J. Witono, S. Mursidawati, A. Susatya, [et al]. 2023. Most of the world's largest flowers (genus Rafflesia) are now on the brink of extinction. Plants, People, Planet, 7 (2): 331–346. https://doi.org/10.1002/ppp3.10431

Meijer, W. 1984. New species of Rafflesia (Rafflesiaceae). Blumea, 30 (1): 209–215. https://repository.naturalis.nl/pub/524883

Nainar, A., M. Mahali, K. U. Kamlun, N. A. Besar, L. Majuakim, [et al.]. 2022. Higher water yield but no evidence of higher flashiness in tropical montane cloud forest (TMCF) headwater streams. Hydrology, 9 (10): 162. https://doi.org/10.3390/hydrology9100162

Nais, J., 2001. Rafflesia of The World. Sabah Parks in association with Natural History Publications. Kota Kinabalu. 1–243.

Nickrent, D. L. 2020. Parasitic angiosperms: How often and how many? Taxon, 69 (1): 5–27. https://doi.org/10.1002/tax.121953

Niemann, U., B. Boecking, P. Brueggemann, W. Mebus, B. Mazurek, [et al.]. 2020. Tinnitus-related distress after multimodal treatment can be characterized using a key subset of baseline variables. PLoS ONE, 15 (1): e0228037. https://doi.org/10.1371/journal.pone.0228037

Nikolov, L. A., P. B. Tomlinson, M. Sugumaran, P. K. Endress, E. M. Kramer, [et al.]. 2014. Holoparasitic Rafflesiaceae possess the most reduced endophytes and yet give rise to the world's largest flowers. Annals of Botany, 114 (2): 233–242. https://doi.org/10.1093/aob/mcu114

Nikolov, L. A., C. C. Davis. 2017. The big, the bad, and the beautiful: Biology of the world's largest flowers. Journal of Systematics and Evolution, 55 (6): 516–524. https://doi.org/10.1111/jse.12260

Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, [et al.]. 2011. A large and persistent carbon sink in the World’s forests. Science, 333 (6045): 988–994. http://dx.doi.org/10.1126/science.1201609

Pacayán, S., F. D. Alfaro, W. Pérez-Martínez, I. Briceño-de-Urbaneja. 2019. Potential distribution model of Leontochir ovallei using remote sensing data. Revista de Teledetección, 54: 59–69. https://doi.org/10.4995/raet.2019.12792

Patiño, S., T. Aalto, A.A. Edwards, J. Grace. 2002. Is Rafflesia an endothermic flower? New Phytologist, 154 (2): 429–437. https://doi.org/10.1046/j.1469-8137.2002.00396.x

Payne, J. 1988, Orang-utan Conservation in Sabah, WWF Malaysia. Project No. 96/86 and WWF International Project No. 3759. WWF Malaysia, Kuala Lumpur, 137 pp. http://myagric.upm.edu.my/id/eprint/8716

Perbet, P., M. Fortin, A.Ville, M. Béland. 2019. Near real-time deforestation detection in Malaysia and Indonesia using change vector analysis with three sensors. International Journal of Remote Sensing, 40 (19): 7439–7458. https://doi.org/10.1080/01431161.2019.1579390

Peterson, A. T., J. Soberón. 2012. Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10 (2): 102–107. https://doi.org/10.4322/natcon.2012.019

Poggio, L., L. M. de Sousa, N. H. Batjes, G. B. M. Heuvelink, B. Kempen, [et al.]. 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL, 7 (1): 217–240, https://doi.org/10.5194/soil-7-217-2021

Qie, L., S. L. Lewis, M. J. P. Sullivan, G. Lopez-Gonzalez, G. C. Pickavance, [et al.]. 2017. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nature Communicaions, 8: 1966. https://doi.org/10.1038/s41467-017-01997-0

Radomski, T., D. Beamer, A. Babineau, C. Wilson, J. Pechmann, [et al.]. 2022. Finding what you don’t know: testing SDM methods for poorly known species. Diversity & Distributions, 28 (9): 1769–1779. https://doi.org/10.1111/ddi.13536

Rafiqpoor, M. D., J. Nieder. 2006. Altitudinal zonation of climate and vegetation in a global megadiversity centre, Mount Kinabalu (North Borneo). ERDKUNDE, 60 (4): 362–374. https://doi.org/10.3112/erdkunde.2006.04.06

Ramírez, P. B., S. Machado, S. Singh, R. Plunkett, F. J. Calderón. 2023. Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat–soil systems. Frontiers in Soil Science, 3: 1233886. https://doi.org/10.3389/fsoil.2023.1233886

Rathore, M. K., L. K. Sharma. 2023. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodiversity & Conservation, 32 (10): 1–35. http://dx.doi.org/10.1007/s10531-023-02648-1

Renjana, E., I. P. Astuti, E. Munawaroh, S. Mursidawati, J. R. Witono, [et al.]. 2022. Assessing potential habitat suitability of parasitic plant: A case study of Rafflesia arnoldii and its host plants. Global Ecology & Conservation, 34: p.e02063. http://doi.org/10.1016/j.gecco.2022.e02063

Sabah... 2012. Sabah State Government, 2012. Sabah Biodiversity Strategy 2012–2022. Available at: http://ww2.sabah.gov.my/phb/wp-content/uploads/Sabah-Biodiversity-Conservation-Strategy-ilovepdf-compressed1.pdf

Shaw, J. 2017. Colossal Blossom. Pursuing the peculiar genetics of a parasitic plant. Harvard Magazine, March-April 2017; (online publication https://www.harvardmagazine.com/2017/02/colossal-blossom).

Siahaan, F.A., R. Iryadi, D. Lestari. 2024. Edaphic characteristics of Rafflesia habitats in Indonesia: Implications for conservation and propagation. Journal of Tropical Biodiversity & Biotechnology, 9 (3): 1–11. https://doi.org/10.1007/s10531-023-02648-1

Singh, A., P. Santra, M. Kumar, N. Panwar, P. R. Meghwal. 2016. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches. Environmental Monitoring & Assessment, 188 (9): 529. https://doi.org/10.1007/s10661-016-5522-x

Sloan, S., M. J. Campbell, M. Alamgir, A. M. Lechner, J. Engert, [et al.]. 2019. Trans-national conservation and infrastructure development in the Heart of Borneo. PLoS One, 14 (9): e0221947. https://doi.org/10.1371/journal.pone.0221947

Somers, R. H. 1962. A new asymmetric measure of association for ordinal variables. American Sociological Review, 27 (6): 799–811. https://doi.org/10.2307/2090408

Song, L., L. Estes. 2023. itsdm: Isolation forest-based presence-only species distribution modelling and explanation in r. Methods in Ecology & Evolution, 14 (3): 831–840. https://doi.org/10.1111/2041-210X.14067

Stevens, J. 1992. Applied Multivariate Statistics for the Social Sciences (4th ed.). Lawrence Erlbaum Associates, Inc., 1–720. https://doi.org/10.4324/9781410604491

Thirumalai, K., P. N. DiNezio, Y. Okumura, C. Deser. 2017. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nature Communicaions, 8: 15531. https://doi.org/10.1038/ncomms15531

Tsegmed, Z., S. Baasanmunkh, K. Oyundelger, B. Oyuntsetseg, U. Bayarsaikhan, [et al]. 2023. Predicting the current and future suitable habitats, species distribution, and conservation assessment of Fritillaria dagana (Liliaceae). Journal of Asia-Pacific Biodiversity, 16 (3): 384–390. https://doi.org/10.1016/j.japb.2023.01.004

Velazco, S. J. E., F. Villalobos, F. Galvão, P. A. De Marco (Jr.). 2019. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Diversity & Distributions, 25 (4): 660–673. https://doi.org/10.1111/ddi.12886

Velazco, S. J. E., M. B. Rose, A. F. A. Andrade, I. Minoli, J. Franklin. 2022. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology & Evolution, 13 (8): 1661–1669. https://doi.org/10.1111/2041-210X.13874

Wadoux, A., P. A. Saby, M. P. Martin. 2023. Shapley values reveal the drivers of soil organic carbon stock prediction. SOIL, 9 (1): 21–38. https://doi.org/10.5194/soil-9-21-2023

Wahab, R., G. Gunsalam, F. Karolus, D. Dasini, M. Fadil, [et al.]. 2021. Floristic community composition in Rafflesia’s habitat at Kinabalu Park, Sabah. Borneo Science. The Journal of Science and Technology, 42 (2): 1–19. https://doi.org/10.51200/bsj.v42i2.4468

Wahab, R., A. A. Mus, K. Saibeh, S. Khamis, H. Mujih, [et al.]. 2021a. Soil physico-chemistry in the habitat of Rafflesia in Kinabalu Park, Sabah, Malaysia. Journal of Tropical Biology & Conservation (JTBC), 18: 149–165. https://doi.org/10.51200/jtbc.v18i.3450

Wang, S., H. Ruan, Y. Han. 2010. Effects of microclimate, litter type, and mesh size on leaf litter decomposition along an elevation gradient in the Wuyi Mountains, China. Ecological Research, 25 (6): 1113–1120. https://doi.org/10.1007/s11284-010-0736-9

Westwood, J. H., J. I. Yoder, M. P. Timko, C. W. DePamphilis. 2010. The evolution of parasitism in plants. Trends in Plant Science, 15(4): 227 – 235. https://doi.org/10.1016/j.tplants.2010.01.004

Wilson, A. M., W. Jetz. 2016. Remotely sensed high resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PloS Biology, 14(3): e1002415. https://doi.org/10.1371/journal.pbio.1002415